

Original Article

DOI: 10.53389/RJAHS.2025040105

Exploring the Impact of Combined Body Mass Index and Glycated Haemoglobin (HbA1c) Levels on Pre-Diabetes Risk

Shanzah Adnan, Imran Tipu*

Department of Life Sciences, School of Science, University of Management and Technology, Lahore.

Author's Contribution

SA Conception and design, SA Collection and assembly of data, ${}^{S\widetilde{A},\;IT}$ Analysis and interpretation of the data, Statistical expertise, IT Final approval and guarantor of the article

Article Info.

Received: Feb 02, 2025 Acceptance: March 25, 2025 Conflict of Interest: None Funding Sources: None

Address of Correspondence

Imran Tipu*

Department of Life Sciences, School of Science, University of Management and Technology, Lahore, 54770, Pakistan

imran.tipu@umt.edu.pk

ABSTRACT

Background: Prediabetes, a global health concern with its trending prevalence intensified the need of early and effective interventions. It's a medical condition, recognized by elevated blood glucose but not sufficiently high to be defined as Type 2 Diabetes Mellitus. Key factors for prediabetes diagnosis included, HbA1c (a biomarker) which shows a comprehensive picture of glycaemic range from past 2 to 3 months with values from 5.7% to 6.4% indicating prediabetes. Body Mass Index (BMI), depicting adiposity in body leading to insulin sensitivity and impaired glucose metabolism, classifying participants into healthy, overweight and obese categories.

Objective: The primary objective was to explore the effect of BMI and HbA1c levels in participants to assess pre-diabetes risk.

Methodology: A quantitative, cross-sectional study was conducted between February 2023 and August 2024. The study population comprised university students aged 20-25 years, selected through stratified random sampling based on inclusion/exclusion criteria (excluding those with existing medical conditions). A total of 110 participants were enrolled following informed consent. BMI was calculated using standard anthropometric methods. HbA1c was measured via blood sampling using standardized laboratory protocols, while RBG levels were assessed using a handheld glucometer. Data were statistically analyzed using SPSS software.

Results: Among the 110 participants, 46 were male and 64 were female. BMI classification revealed 38.2% were within a healthy range (n=42), 41.8% overweight (n=46), and 20% obese (n=22). Based on HbA1c, 58.2% (n=64) had normal levels, while 41.8% (n=46) were in the prediabetic range. RBG results showed 59.1% (n=65) with normal glucose levels and 40.9% (n=45) falling within the prediabetic range. Pearson's correlation analysis revealed a significant positive correlation between BMI and HbA1c (r = 0.46, p < 0.001), indicating elevated BMI is independently associated with prediabetes risk. In contrast, the correlation between HbA1c and RBG was non-significant (r = 0.182, p > 0.05), suggesting that elevated RBG may not directly influence HbA1c levels.

Conclusion: This study highlights the relevance of timely evaluation of Body Mass Index and Glycated Haemoglobin level to evaluate pre-diabetes for prompt interventions.

Keywords: Body Mass Index, Glycated Haemoglobin, random blood glucose level, prediabetes, obesity, Type 2 Diabetes Mellitus.

Introduction

Pre-diabetes was the reflection of health worldwide.1 It had a significant impact causing public health challenge because of the lifestyle modifications.² Pre-diabetes prevalence showed a prominent rising trend from year 2020 to 2023.3 In 2021, IDF Diabetes Atlas 10 edition, estimated that 537 million people globally from age 20-79 years old who were suffering with diabetes mellitus, were expected to increase up to 754 million

by the year 2045.4 Worldwide epidemiological survey had unveiled rise in the incidence of pre-diabetes in different demographical areas.^{5,6} As reported by International Diabetes Federation (IDF), for the South East Asian (SEA) countries, the estimated prevalence of diabetes was 8.7% by the year 2021 and was expected to increase up to 11.3% by the year 2045.^{7,8} So, the basis of conducting this study was the persistent need

DOI: 10.53389/RJAHS.2024030205

to comprehensively evaluate the risk factors which contributed in the onset of pre-diabetes condition. As there is a global increase in incidence and prevalence of pre-diabetes,9-11 therefore it was crucial to explore the factors for early detection and prevention of this condition. Previous studies had shown the incidence of pre-diabetes, 12 population-based studies on pre-diabetes, 13,14 its intervention and prevention 15,16 and studies on individual risk factors acting as diagnostic marker, 17 but there still remains a gap to collectively evaluate the major risk factors, contributing in causing pre-diabetes. The risk factors studied are Body Mass Index (BMI), Glycated Haemoglobin (HbA1c) and Random blood glucose level developing prediabetes risk. HbA1c a diagnostic marker, 18 mainly used to assess blood glycaemic level of past 2 to 3 months in order to assess diabetes condition. 19 There are researches that strongly support that HbA1c is a biomarker for diabetes evaluation.²⁰

BMI, the second risk factor included in this study, reveals a person's body adiposity ^{21,22} and its health status set by World Health Organization (WHO).²³ There are recent researches that report BMI as an indicator to assess impaired glucose metabolism in body developed due to insulin resistance.²⁴ Lastly, Random blood glucose is used as a factor to assess current blood glucose in body.25 Previous population-based analysis suggest that random blood glucose was high in diabetic patients but was not significantly high in non-diabetic individuals.²⁶ Therefore, this study mainly focused on addressing the combined impact of Body Mass Index (BMI) and Glycated Haemoglobin (HbA1c) in causing pre-diabetes. Additionally, this study illuminates complex relationship of random blood glucose level with body mass index and glycated haemoglobin.

Moreover, the significance of this study addressed goals set by Sustainable Development Goal (SDG) of United Nations.²⁷ This study particularly focused SDG 3 (Good Health and Well-being) which mainly engrossed on the risk factors, Body Mass Index (BMI) and Glycated Haemoglobin (HbA1c) levels causing prediabetes and which should be assessed timely to prevent its progression and complication.28

The primary objective was to explore the effect of BMI and HbA1c levels in participants to assess pre-diabetes risk. Also, the research aimed to identify any link among BMI, HbA1c and random blood glucose level which could contribute in prediabetes occurrence.

Materials and Methods

A quantitative research approach was employed to provide complete understanding of the risk factors BMI and HbA1c levels in developing pre-diabetes. Data collection involved an

experimental approach to assess risk factors. To ensure representativeness of data collected, probability sampling was utilized to collect data from population. University students (population) were chosen for this study. Participant selection was determined by inclusion criteria (candidates from age 20 to 25 years who were willing to participate) and exclusion criteria (participants with age above 25 years, having pregnancy, type 1 diabetes, type 2 diabetes or other serious medical condition and who were unwilling to comply with research experimental procedure), thus representing the target population. Both online (social media platform) and offline (Informational sessions, discussions, seminars, classroom presentations, announcements and different workshops) channels were imposed to exploit the engagement of participants.

HbA1c and blood glucose levels, both were assessed on the basis of diagnostic criteria set by American Diabetes Association (ADA).^{29,30} Whereas, Body mass index was classification on the basis of World Health Organization (WHO) auidelines.31

To clarify the intricate interplay among factors BMI, HbA1c and random blood glucose level, experimental approach was employed.

For HbA1c testing, blood withdrawal procedures, following the guidelines for sample collection and venipuncture was conducted. To make sure the rationality and consistency of results, Bio-Active HbA1c Direct Diagnostic kit (Catalogue no. 1 0498 99 93 210) was selected and tests were run in science laboratory of UMT. The principle of this test was the interaction of antigen-antibody determining the concentration of HbA1c in blood. For sample preparation, venous blood of participants was taken using sterile techniques. 1ml distilled water was added in 20 µl whole blood sample and was made to stand for 10 mins. Then 8µl of sample was taken and R1 (Latex 0.15, Buffer, stabilizer) 300 µl was added, allowed to mix and incubated for 5 mins at 37 °c. Lastly, R2 (100 µl) was added in sample tube and incubated at 37 °c for 5 mins. Next, the sample readings were noted after running it in spectrophotometer at 630nm.

For random blood glucose testing, Evocheck glucometer (a handheld glucometer) was utilized showing the current glycemic index of participants. Finger was first cleaned with an alcohol swab to prevent any contamination before using lancet for blood sample collection. Then the blood sample was applied to test strip, which was prior inserted in glucometer. Within few seconds, random blood glucose level of the participant was recorded.

Anthropometric Measurements 32 were taken and Metric system formula33 was used to evaluate Body Mass Index. Standardized devices like digital balances and stadiometer were used to measure both height and weight of participants. First, weight was measured while standing barefooted on weighing scale to minimize variability. Then, height was recorded by standing straight alongside the stadiometer. These inputs were used in Metric system formula yielding a numerical value indicating BMI.

Results

A total of 110, participants were enrolled in the study. Male (n=46, 41.8%) and female (n=64, 58.2%). Age 20 to 22 (n=56, 50.9%) and aged 23 to 25 years (n=54, 49%), shown in (Table

Table I: Baseline data of participants.				
Characteristics	Number of participants	Percentage		
Gender				
Male	46	41.8%		
Female	64	58.2%		
Age				
20 -22 years old	56	50.9%		
23 -25 years old	54	49%		

BMI, mean (± SD) was 25.19 (± 3.68) with values ranging from minimum 19.7 to maximum 31.6 showing healthy category (n=42, 38.2%), overweight (n=46, 41.8%) and obese (n=22, 20%) in (Table II).

Table II: Body Mass Index.			
	Mean ± SD	25.182 ± 3.6764	
	Minimum	19.7	
Maximum		31.6	
		N	%
BMI -	Healthy weight (18.5-24.9 kg/m²)	42	38.2 %
	Overweight (25-29.9 kg/m²)	46	41.8 %
	Obese (>30 kg/m²)	22	20.0 %

HbA1c, mean± SD was 5.70 (± 0.29) with minimum value 5.3% to maximum value 6.2%, providing data for normal HbA1c (n=64, 58.2%) and prediabetes (n=46, 41.8%), underlining the range of glycaemic differences among target population, shown in (Table III).

Data from glucometer for random blood glucose level showed, Mean (\pm SD), 137 \pm (10.2). Participants with normal blood glucose (n=65, 59.1%) and prediabetes (n=45,40.9%) as in (Table IV).

Relationship of HbA1c with BMI and Blood Glucose was assessed by Pearson's correlation test as shown in (Table 5). A positive significant correlation (r=0.46, p<0.00), indicated increase in BMI (falling in the category of overweight or obese) tend to increase HbA1c level in individuals making them prediabetic. Whereas, the relationship between HbA1c and blood glucose was non-significant correlation (r=0.18, p>0.05), representing that blood glucose values were not related with an increase in HbA1c levels.

Table III: HbA1c values testing.			
HbA1c Levels	Mean ± SD	5.70 ± 0.294	
	Minimum	5.3%	
	Maximum	6.2%	
		N	%
	Normal HbA1c (below 5.6%)	64	58.2
	Prediabetes (5.7% to 6.5%)	46	41.8

Table IV: Blood Glucose Levels			
	Mean ± SD	137 ± 10.2	
	Minimum	120	
Blood	Maximum	153	
Glucose		N	%
	Normal (120-140 mg/dl)	65	59.1
·	Pre-diabetes (140-160 mg/dl)	45	40.9

Table V: Glucose le	Correlation Analy evels.	ysis of HbA	1c with BI	MI and Blood	
Correlatio	Correlations				
		HbA1c	BMI	Blood Glucose	
HbA1c	Pearson Correlation	1	.463**	0.182	
	Sig. (2-tailed)		0.000	0.056	
ВМІ	Pearson Correlation	.463**	1	0.018	
	Sig. (2-tailed)	0.000		0.85	
Blood Glucose	Pearson Correlation	0.182	0.018	1	
	Sig. (2-tailed)	0.056	0.85		
**Correl	**Correlation is significant at the 0.01 level (2-tailed).				

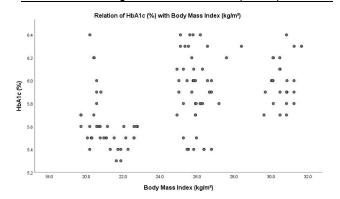


Figure 1. Relation of HbA1c values with BMI (kg/m²).

Scatter plot graph signifies direct relation of HbA1c with BMI, as shown in (Figure 1), where having high body mass index (BMI) was linked to have elevated HbA1c values.

Whereas, second graph (Figure 2) shows indirect or nonsignificant association of HbA1c with blood glucose.

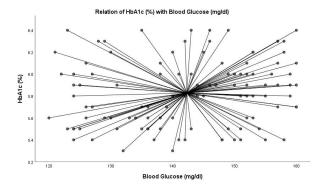


Figure 2. Relation of HbA1c values with Blood Glucose (mg/dl).

Discussion

Past researches had shown positive correlation between glycated haemoglobin and body mass index, demonstrating that elevated BMI value was linked with low blood glucose level.^{34,35} A recent study illustrated significant impact of high BMI and HbA1c levels, especially participants who were obese (BMI 30 or >30 kg/m²) were having elevated HbA1c values.³⁶ This association of body mass index with glycated haemoglobin insisted the need of weight control strategies.³⁷ Likewise, reflective analysis including obese as target population confirmed that excessive weight gain (beyond healthy weight limit set by World Health Organization) spikes HbA1c, making the person prone to pre-diabetes.³⁸ Many studies on diabetic and non-diabetic population reported that without any weight control management strategy, worsening of HbA1c level along with association of other chronic diseases was observed.39

Similarly, there are studies that align with the result of this research (r=0.463, p<0.001) confirming linear relationship of both factors. On the other hand, there were articles that report negative correlation between random blood glucose and glycated haemoglobin level as done in this research (r=0.182, p>0.05).36 Furthermore, there were researches that report HbA1c is a more reliable indicator for long term assessment of glycaemic index rather than random blood glucose testing, which could be influenced by diet or stress.⁴⁰ Conversely, there were also population-based studies conducted on diabetic patients that show a linear relation between glycated haemoglobin and random blood glucose, which is because of already existing diabetes condition.41 Therefore, glycated haemoglobin is mainly considered a diagnostic marker to evaluate pre-diabetes.

Hence, the findings of this study in scripts the importance of assessing body mass index with glycated haemoglobin to

predict risk of pre-diabetes. By measuring both of these factors, clinicians can more precisely identify individuals who are at risk of developing type 2 diabetes mellitus. Additionally, integrating BMI in diabetes screening model will overall enhance the evaluation pre-diabetes. Moreover, personalized of interventions and weight control strategy plans, could be helpful in reducing the onset of type 2 diabetes mellitus Also, implication of tailored diet plans in public health centre and hospital along with providing awareness in society, diabetes burden could be mitigated worldwide.

Recommendation and Limitation: First limitation was for not having a longitudinal plan to track body mass index variation impacting glycated haemoglobin levels, like fluctuation in HbA1c levels due to lifestyle changes. Secondly, restriction of age group limited the generalizability of study on other socioeconomic groups. Lastly, switching random blood glucose testing with oral glucose tolerance test could be effective in providing accurate glycaemic status of participants.

Conclusions

The study demonstrates a mixed picture addressing the research objective, which was "HbA1c levels and BMI in developing pre-diabetes risk". As per the data and findings of this study, a positive significant correlation was found among BMI and HbA1c (r= .463, p<0.01) by Pearson's correlation test. Moreover, it was noteworthy, that according to Pearson's correlation test (r=0.182, p>0.05), HbA1c and blood glucose did not have any significant association.

Acknowledgement: The author would like to acknowledge Department of Life Sciences, UMT for continuous support all over this expedition.

References

- Ouyang A, Hu K, Chen L. Trends and risk factors of diabetes and prediabetes in US adolescents, 1999–2020. Diabetes Res Clin Pract. 2024:207. doi:10.1016/j.diabres.2023.111022
- Selvin E. COMMENT ON NATHAN ET AL: Relationship Between Average Glucose Levels and HbA1c Differs Across Racial Groups: A Substudy of the GRADE Randomized Trial. Diabetes Care 2024;47:2155-2163. Diabetes Care. 2025;48(3):e33. doi:10.2337/dc24-2223
- Onthoni DD, Chen YE, Lai YH, et al. Clustering-based risk stratification of prediabetes populations: Insights from the Taiwan and UK Biobanks. J Diabetes Investig. 2025;16(1):25-35. doi:10.1111/jdi.14328
- Moradkhani A, Azami M, Mohammadzadeh P, Baradaran HR, Saed L. The prevalence of all stype of diabetes and pre - diabetes in the Eastern Mediterranean countries : a meta - analysis study. Published online 2025.

- 5. Vera-ponce VJ, Zuzunaga-montoya JAL castro FE. Prevalence and incidence of prediabetes in Latin America . A systematic review and meta-analysis. 2025;6.
- Yang C, Li S, Wu L, et al. Prevalence of prediabetes by the fasting plasma glucose and HbA1c screening criteria among the children and adolescents of Shenzhen, China. Front Endocrinol (Lausanne). 2024:15. doi:10.3389/fendo.2024.1301921
- 7. Ali M, Alam MM, Rifat MA, et al. Prevalence of diabetes and prediabetes in South Asian countries: a systematic review and meta-analysis. Discov public Heal. 2025;22(1). doi:10.1186/s12982-025-00426-8
- Pandey V, Aier S, Agarwal S, Sandhu AS, Murali SD. Prevalence of prediabetes in patients with idiopathic frozen shoulder: a prospective study. JSES Int. 2024;8(1). doi:10.1016/j.jseint.2023.08.017
- Sheng Z, Cao JY, Pang YC, et al. Effects of lifestyle modification and anti-diabetic medicine on prediabetes progress: A systematic review and meta-analysis. Front (Lausanne). 2019;10(JULY). Endocrinol doi:10.3389/fendo.2019.00455
- 10. Virtanen JK, Hantunen S, Kallio N, et al. The effect of vitamin D3 supplementation on the incidence of type 2 diabetes in healthy older adults not at high risk for diabetes (FIND): a randomised controlled trial. Diabetologia. 2025;68(4):715-726. doi:10.1007/s00125-024-06336-9
- 11. Mohammad L, Alketbi B, Alketbi R, et al. Incidence and predictors of type 2 diabetes mellitus in a populationbased cohort study in Abu Dhabi. Published online 2025:1-
- 12. Bauer J, Hegewald J, Rossnagel K, et al. Incidence of type 2 diabetes and metabolic syndrome by Occupation - 10-Year follow-up of the Gutenberg Health Study. BMC Public Health. 2025;25(1). doi:10.1186/s12889-025-21732-5
- 13. Noroozzadeh M, Mousavi M, Naz MSG, Farahmand M, Azizi F, Ramezani Tehrani F. Early menopause in mothers and the risks of pre-diabetes and type 2 diabetes mellitus in female and male offspring: a population-based cohort study. Reprod Biol Endocrinol. 2025;23(1). doi:10.1186/s12958-025-01405-z
- 14. Dal Grande A, Van Herck M, Breyer-Kohansal R, et al. Incidence of Prediabetes and Diabetes in a European Longitudinal General Population Cohort and Its Associated Factors—Results From the Austrian LEAD Study. J Diabetes Res. 2025;2025(1). doi:10.1155/jdr/5540276
- 15. Wang Z, Qian L, Shen JT, Wang B, Shen XH, Shi GP. Short-term structured dietary and exercise interventions delay diabetes onset in prediabetic patients: a prospective quasi-experimental study. Front Endocrinol (Lausanne). 2025;16(March):1-19. doi:10.3389/fendo.2025.1413206
- 16. Deepak Kumar Behera, 2Shehnaz Firdaus, 3Rajlaxmi Upadhyay 4Kananbala Sahu, 1Assistant Professor, Department of Paediatrics, SCB Medical College & Hospital and Sishubhaban, Cuttack, Odisha I, 2Assistant Professor, Department of Microbiology, Hi-Tech Medical College & Hospital, Bhubaneswar, Odisha I, et al. Clinico epidemiological pattern of scrub typhus in paediatric

- population and therapeutic response to doxycycline: A retrospective observational study from eastern India. 2024;13(12):963-967. doi:10.69605/ijlbpr
- 17. Yu S, Li J, Chen H, et al. Association of the inflammatory burden index with the risk of pre-diabetes and diabetes mellitus: a cross-sectional study. BMC Endocr Disord. 2025;25(1). doi:10.1186/s12902-025-01911-6
- 18. Han L, Xu S, Chen R, et al. Causal associations between HbA1c and multiple diseases unveiled through a Mendelian randomization phenome-wide association study in East Asian populations. Med (United States). 2025;104(11):e41861. doi:10.1097/MD.0000000000041861
- 19. Lai YR, Chiu WC, Cheng BC, et al. Impact of HbA1c variability and time-in-range fluctuations on large and small nerve fiber dysfunction in well-controlled type 2 diabetes: A prospective cohort observational study. J Diabetes Investia. Published online 2025:1-11. doi:10.1111/idi.70079
- 20. Stedman M, Heald AH, Holland D, et al. The Impact of Age and Sex on Fasting Plasma Glucose and Glycated Haemoglobin (HbA1c) in the Non-diabetes Population. Diabetes Ther. 2025;16(2):257-267. doi:10.1007/s13300-024-01680-w
- 21. Blüher M. An overview of obesity-related complications: The epidemiological evidence linking body weight and other markers of obesity to adverse health outcomes. Obes Metab. 2025;27(S2):3-19. Diabetes. doi:10.1111/dom.16263
- 22. Hui SS chuen, Chin EC yip, Chan JKW, Chan BPS, Wan JH pong, Wong SWS. Association of 'weekend warrior' and other leisure time physical activity patterns with obesity and adiposity: A cross-sectional study. Diabetes. Obes Metab. 2025;27(2):482-489. doi:10.1111/dom.16017
- 23. Byker Shanks C, Bruening M, Yaroch AL. BMI or not to BMI? debating the value of body mass index as a measure of health in adults. Int J Behav Nutr Phys Act. 2025;22(1):1-6. doi:10.1186/s12966-025-01719-6
- 24. Jin Q, Liu S, Zhang Y, et al. Severe obesity, high inflammation, insulin resistance with risks of all-cause mortality and all-site cancers, and potential modification by lifestyles. Sci Rep. 2025:15(1):1-11. doi:10.1038/s41598-025-85519-9
- 25. DANRAKA AM, ABUBAKAR ZG, Ajayi RF, Abdullahi HA, OKEJI GK. A Cross-sectional Baseline Survey on Random Blood Glucose (RBG) Screening at World Diabetes Day Commemoration Health Outreach amongst Adult Residents' of Gwagwalada Federal Capital Territory Abuja, Niger Pharm. 2025;59(1):55-66. Nigeria. J doi:10.51412/psnnjp.2025.06
- 26. Cui C, Song J, Zhang L, et al. The additive effect of the stress hyperglycemia ratio on type 2 diabetes: a population-based cohort study. Cardiovasc Diabetol. 2025;24(1). doi:10.1186/s12933-024-02567-7
- 27. Garg S, Kim M, Romero-Suarez D. Current advancements in fungal engineering technologies for Sustainable Development Goals. Trends Microbiol. 2025;33(3):285-

- 301. doi:10.1016/j.tim.2024.11.001
- 28. Gavai AK, van Hillegersberg J. Al-driven personalized nutrition: RAG-based digital health solution for obesity and type 2 diabetes. PLOS Digit Heal. 2025;4(5 May):1-16. doi:10.1371/journal.pdig.0000758
- 29. Daya NR, Fang M, Wang D, et al. Glucose Abnormalities Detected by Continuous Glucose Monitoring in Very Old Adults With and Without Diabetes Glucose Abnormalities Detected by Continuous Glucose Monitoring in Very Old Adults With and Without Diabetes. 2025;48(3):416-421.
- 30. Bilal A. Understanding Diabetes Overtreatment in Older Adults: Are We at an Intersection? Diabetes Care. 2025;48(1):47-49. doi:10.2337/dci24-0075
- 31. Alves RL, Toral N, Paravidino V, Gonçalves VSS. Comparison of scenarios in the trajectory of body mass index among adolescents monitored in primary health care: the VigiNUTRI Brazil study. Sci Rep. 2025;15(1):1-11. doi:10.1038/s41598-025-86138-0
- 32. Açar Y, Köksal E. Anthropometric Measurements and Laboratory Methods for Pregnancy: An Update Review to Evaluation of Body Composition. Curr Nutr Rep. 2025;14(1). doi:10.1007/s13668-024-00597-x
- 33. Chen LK, Meng LC, Peng LN, et al. Mapping Normative Muscle Health Metrics Across the Aging Continuum: A Multinational Study Pooling Data From Eight Cohorts in Japan, Malaysia and Taiwan. J Cachexia Sarcopenia Muscle. 2025;16(1). doi:10.1002/jcsm.13731
- 34. Wu J, Yu W, Huang L, et al. The HbA1c/HDL-C ratio as a screening indicator of NAFLD in U.S. adults: a crosssectional NHANES analysis (2017–2020). Gastroenterol. 2025;25(1). doi:10.1186/s12876-025-03974-0
- 35. Deng L, Jia L, Wu XL, Cheng M. Association Between Body Mass Index and Glycemic Control in Type 2

- Diabetes Mellitus: A Cross-Sectional Study. Diabetes, Syndr Obes. 2025;18:555-563. doi:10.2147/DMSO.S508365
- 36. AlZeer I, AlBassam AM, AlFeraih A, et al. Correlation Between Glycated Hemoglobin (HbA1c) Levels and Lipid Profile in Patients With Type 2 Diabetes Mellitus at a Tertiary Hospital in Saudi Arabia. Cureus. 2025;17(3):1-10. doi:10.7759/cureus.80736
- 37. Cui X, Sun X, Li Q, Chen Z. Changes in blood glucose and lipid metabolism levels in children with central precocious puberty and its correlation with obesity. Front Pediatr. 2024;12(January):1-6. doi:10.3389/fped.2024.1488522
- 38. Cichosz SL, Kronborg T, Laugesen E, et al. From Stability to Variability: Classification of Healthy Individuals, Prediabetes, and Type 2 Diabetes Using Glycemic Variability Indices from Continuous Glucose Monitoring Data. Diabetes Technol Ther. 2025;27(1):34-44. doi:10.1089/dia.2024.0226
- 39. McEwan P, Foos V, Roberts G, et al. Beyond glycated haemoglobin: Modelling contemporary management of type 2 diabetes with the updated Cardiff model. Diabetes, Obes Metab. 2025;27(4):1752-1761. doi:10.1111/dom.16141
- 40. Lenters-Westra E, Fokkert M, Kilpatrick ES, et al. Managing discordance between HbA1c and glucose management indicator. Diabet Med. 2025;42(6):1-10. doi:10.1111/dme.70023
- 41. Santoso AH, Destra E, Firmansyah Y, Lontoh SO. Impact of Glucose Profile, Fasting Insulin, and Renal Function on Sarcopenia in Elderly at Single Centered Nursing Home: A Cross-Sectional Structural Equation Model Analysis. J Healthc. 2025;18:1393-1404. Multidiscip doi:10.2147/JMDH.S486370