Objective: To evaluate the serum phosphate level of children with severe acute malnutrition and effect of therapeutic feeds (F75 and F100) on serum phosphate levels.

Study Design: Prospective Observational Study.

Place and Duration of Study: The study was conducted at Stabilization center of Children’s Hospital and Institute of Child Health Multan from 1st March 2018 to 30th March 2019.

Materials and Methods: The total 270 children with severe acute malnutrition, who were under 5 years of age and admitted to the stabilization center for complicated SAM during study duration were included in the study. Initial management of the patients were started by following WHO protocols for Severe Acute Malnutrition management and the baseline labs along with serum phosphate levels were sent for evaluation. Patients were admitted at Stabilization Centre for the management plan as per guidelines. Once the patients were stabilized in one week approximately the transition towards rehabilitation phase of severe acute management started.

Serum phosphate levels were assessed at admission, at stabilization (day 7 of admission) and at the time of discharge. Data was analyzed using SPSS version 21.

Results: The mean age of our patients was 22 ± 2 months. The male to female ratio were 1:2. Hypophosphatemia was documented in 180 (66%) patients with mean 0.96 ± 0.40 mmol/lit < (1.45 – 1.78mmol/lit) serum phosphate levels at the time of admission. During transition phase the phosphate levels were 1.1± 0.45 mmol/l and after rehabilitation phase 1.45 ± 0.45 mmol/l on average of 15 days of management.

After using F75 and F100 therapeutic feeds in stabilization, transition, and rehabilitation phase 178 (98.9%) children were treated and had normal serum phosphate level at the time of discharge.

Conclusion: Hypophosphatemia is commonly present in SAM children. Introduction of therapeutic feeds F75 and F-100 during stabilization phase and rehabilitation phase significantly improves phosphate levels in SAM children with low phosphate levels.

Key Words: Hypophosphatemia, Nutrition Rehabilitation, Phosphorous, Severe Acute Malnutrition, Serum phosphate levels, Therapeutic Feeds.
uptake of electrolytes, including phosphate (i.e.,
natural occurring form of mineral phosphorous). If
the diet contains insufficient amounts of
phosphorous this may exacerbate phosphorous
depletion. Serum electrolytes are not routinely
monitored; therefore, adequate phosphorous
content in the diet is essential to prevent depletion.
To prevent refeeding syndrome, the WHO’s
guidelines on in patient management of SAM
includes a stabilization phase with a low energy
formula i.e., F-75 as well as gradual transition from
stabilization phase (F-75) to rehabilitation phase (F-
100), F75 & F100 Therapeutic Feed by WHO Provided
about 35mg/kg/dl of phosphorus on 130ml/kg/day
feed from F75 to 156mg/kg/day of phosphorus
during rehabilitation phase from 200ml/kg/day of
F100. In previous studies frequency of phosphate
levels in children with SAM varies from 72.9% - 93%
with limited local data. Studies on hypophosphatemia in SAM children are usually
focused on stabilization phase and at first day of
admission. Hence it was planned to document
phosphorous levels in SAM children and to evaluate
improvement in phosphate levels after using
therapeutic feeds i.e., F75 and F-100. Hence this
study was aimed to evaluate the base line serum
phosphate levels in children with SAM and
monitoring levels during transition and after
rehabilitation phase for improvement after using
WHO therapeutic feeding formulas.

Materials and Methods
A prospective observational study was conducted at
Stabilization center of Children’s Hospital and
Institute of Child Health Multan Pakistan from 1st
March 2018 to 30th March 2019.
Simple random sampling technique was used and
270 the children whose parents/guardians gave
consent and were less than five years and admitted
to the Stabilization center with a diagnosis of
uncomplicated SAM i.e., weight/height or length <
-3SD or Mid Upper Arm Circumference (MUAC) <
11.5cm were included in the study. After taking
ethical board IRB letter (CHM-19-13, 03.01.2019) &
informed written consent 290 patients fulfilling the
inclusion criteria were enrolled during the study
duration with SAM admitted to Stabilization Centre.
After explaining the risks and benefits of this
research, written informed consent was taken from
the children’s parents/guardians. The children
whose guardian refused consent or had chronic
illness or secondary malnutrition were excluded
from the study.
A questionnaire was designed by the lead researcher
and filled by the nursing staff of stabilization center.
All children were managed according to WHO
guidelines. During initial stabilization phase F75 i.e
75 kcal/100 ml, 0.9 gm protein /100 ml was used to
stabilize the patients orally or through Nasogastric
tubes 130 ml/kg/ day depending on the condition of
patient. A child feeding 130 ml/kg/day F75 during
stabilization phase gets 31mg/kg/day phosphorous.
Stabilization phase lasts for up to 7 days usually.
During rehabilitation phase a child gets
210ml/kg/day feed of F-100 which contains 152mg
phosphorous/kg/day.

After initial registration and admission baseline labs
were sent to the clinical laboratory of CH & ICH.
Patients were daily monitored for vital signs, weight,
height, and edema. Serum phosphate levels were
measured at the time of admission, during the
transition phase from stabilization to rehabilitation
approx. at 7th day of admission according to WHO
protocols of SAM management and during
rehabilitation prior to discharge. Data was analyzed
using SPSS version 21, mean and averages of
frequency was calculated and significant value <5
was considered significant.

Operational Definition:
Serum phosphate level (1.45 – 1.78mmol/dl) were
normal and < 1.45mmol/dl were
hypophosphatemia.

Results
The total 270 children with Severe Acute
Malnutrition up to 5 years of age were included in
the study. The mean age of the children included in
the research was 22 ± 2 months. The male to female
ratio was 1:2 (Table I). Hypophosphatemia was
documented in 180 (66%) patients with mean serum
phosphate levels at the time of admission was 0.96 ±
0.40 < (1.45-1.78mmol/Ltr) (Table II). After using F75
and F100 therapeutic feeds during transition phase
of the management of SAM patients the mean serum
phosphate levels were improved to 1.1 ± 0.45 and
after rehabilitation phase on an average of 15 days of
management serum phosphate levels raised to 1.45
± 0.45 mmol/lit. Out of 270 children suffering from
SAM, who were treated with F75 and F100 therapeutic feeds in transition and rehabilitation phase 178 (98.9%) children improved with a normal serum phosphate levels. only two patients still had hypophosphatemia and were further investigated and diagnosed to be suffering from Fanconi syndrome (Table II).

Table I: Baseline Characteristics, Anthropometry, and Complications of SAM Children (n=270)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>(n= 270) mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mo.)</td>
<td>22.2 ± 2</td>
</tr>
<tr>
<td>Males (%)</td>
<td>175 (65.22)</td>
</tr>
<tr>
<td>Females</td>
<td>95 (35.78)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>7.5 ± 1.46</td>
</tr>
<tr>
<td>Height / Length (cm)</td>
<td>78.52 ± 10.21</td>
</tr>
<tr>
<td>Edema (%)</td>
<td>38 (20)</td>
</tr>
<tr>
<td>Mid Upper Arm Circumference (MAUC)</td>
<td>10.49 ± 0.92</td>
</tr>
<tr>
<td>Length/Height for age (Z score)</td>
<td>1.94 ± 1.35</td>
</tr>
<tr>
<td>Weight for length/height (Z score)</td>
<td>3.06 ± 1.01</td>
</tr>
</tbody>
</table>

Table II: Serum Phosphate Levels of SAM Children (n=270)

<table>
<thead>
<tr>
<th>Blood profile</th>
<th>Stabilization Phase (Day 1)</th>
<th>Transition Phase (Day 7)</th>
<th>Rehabilitation Phase (Day 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypophosphatemia (1.45-1.78 mmol/L)</td>
<td>188 (66%)</td>
<td>96 (35.5%)</td>
<td>2 (0.7%)</td>
</tr>
<tr>
<td>Serum Phosphate levels</td>
<td>0.98 ± 0.40</td>
<td>1.1 ± 0.45</td>
<td>1.45 ± 0.45</td>
</tr>
</tbody>
</table>

Discussion

This study shows that hypophosphatemia is very common in children with SAM as supported by similar result in other study. Use of therapeutic feeds (F75 and F100) as per WHO guidelines significantly improves serum phosphate levels; mean 0.96 ± 0.4 to 1.45 ± 0.45 mmol/Ltr after an average of 15 day stay.

In our study frequency of hypophosphatemia among SAM children was 66% during stabilization phase, 35.5 % during transition phase and only 0.7 % during rehabilitation phase. This prevalence is significantly lower than reported by the previous studies. Data suggest that prevalence of hypophosphate in critically ill children at ICU was 71.6% which prolonged the hospital stay but was not directly linked to increased mortality. However, in the present study we did not include the critically ill children in need of emergency care or on ventilators.

Early detection and monitoring of serum phosphate levels are mandatory in SAM children to prevent refeeding syndrome. Out of total about 66% children had hypophosphatemia in the present study. It also shows that malnourished children (SAM) must be treated as per WHO guidelines and phosphorous supplementation in stabilization and rehabilitation phase is mandatory using therapeutic feeds for better treatment outcome and to reduce refeeding syndrome. The therapeutic feeds prepared by WHO recipes for Sam children proves to be effective for correcting the phosphate levels of SAM children. Similar results were documented by Menezes et al.

The study was conducted in a public sector territory care hospital, the findings represent a wide range of population and can therefore be generalized for all SAM children with medical complications during stabilization, transition, and rehabilitation phases. There are a few limitations of the study. Post-discharge phosphate levels were not assessed in these children. A multicenter study with large sample size needs to be conducted in future to evaluate the association of hypophosphatemia among SAM children with other factors.

Conclusion

Hypophosphatemia is commonly present in SAM children. Introduction of therapeutic feeds F75 and F-100 during stabilization phase and rehabilitation phase significantly improved phosphate levels in SAM children with poor phosphate levels.

REFERENCES

https://doi.org/10.57234/jiimc.june23.1647

CONFLICT OF INTEREST
Authors declared no conflicts of Interest.

GRANT SUPPORT AND FINANCIAL DISCLOSURE
Authors have declared no specific grant for this research from any funding agency in public, commercial or nonprofit sector.

DATA SHARING STMT
The data that support the findings of this study are available from the corresponding author upon request.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial 2.0 Generic License.